
Armenian Open Programming Competition

In memory of Vladimir Yeghiazaryan

Solutions

Problem A: Santising
print(x * 0.6)

Problem B: Hidden text
One simple solution

● Copy the file into a text editor
● Replace all tabs to nothing
● Manually find the answer

hayastan

Problem C: Drinking party
● This is the famous NIM problem

 if n % 3 == 2:

 take 1 glass

 else:

 take 2 glasses

● Easy to deduce by trying to play the game for n = 1...10

Problem D: Look-and-Say numbers
● Simply simulate the answer
● For the first 15 items see: https://oeis.org/A005150

https://oeis.org/A005150

Problem E: Roman roads
● Simulate the process starting from the car that left first

○ The first car never gets stuck and finishes as if it were alone

● For every car, it finishes either
○ At the “normal” time without being stuck; or
○ Gets stuck and finishes with a car…

■ that finishes latest among those that left earlier and are wider!

whichever is later

● Can be implemented using a segment tree or a binary indexed tree.

Key observation!

Problem F: Formula One
● Use API from http://ergast.com/
● Scrape some website e.g. https://www.statsf1.com/
● Ergast and Kaggle provide offline database, which you can download and write

a SQL query to get the required data.
● Wikipedia(?)
● ...

We did the first two and the results matched.
Ergast provides Rest API of a form http://ergast.com/api/f1/${year}/${round}/results

http://ergast.com/
https://www.statsf1.com/

Problem G: Can you unzip me?
● Unzipping twice will crash something on your computer.
● Unzipping once is ok, so we do that
● Second step of unzipping and filtering whitespace characters we do in one

step
unzip -p big.zip | grep -o '\S'

● Runs about 30 minutes.

Problem H: Virus shapes (a possible solution)
● Thin the shell using flood fill inside

Problem H: Virus shapes (a possible solution)
● Use BFS to track every (say) 20th point along the contour

Problem H: Virus shapes (a possible solution)
● Compare the angles of consecutive triplets of points, they should all be about

180 degrees, except when there is a corner.

● Knowledge of opencv, python and numpy helps in some parts of this problem,
but are not strictly necessary.

Problem I: Earthovirus
● Randomly check if substrings of length 25 of E are in the parts of X that are

remaining.
● If at least one of them is there, then it is an Earthovirus

○ We know this because X is random
○ If X were adversarially chosen, this algorithm could not work.

Problem J: Statistics
● Another relatively standard data structure problem
● Can be solved in O(NlogN) using std::set or in O(N) using a stack.

Problem K: Virus modelling
● Key observation: relativity

○ Can assume that Alice is at the origin and is not moving

● The problem is reduced to an intersection of a *filled* circle with a segment
○ Find an intersection of a line and a circle
○ Cover the corner cases e.g. Bob being inside the circle and never leaving.

● See e-maxx for algorithms on intersection of line and a circle

Problem L: Contest
● Key observation 1

○ Hayk should always propose the problem with the largest qi* si value, where qi is the updated
probability for problem i.

● Key observation 2
○ Consider some set S of problems that have not yet been accepted.
○ If the total number of attempts Hayk did on problems in S is m, then we can calculate exactly

the updated probabilities qi for i in S by simulating m steps of the process using KO1.

● Using KO1 and KO2, we can solve the problem using DP.
● The state of the DP is

(set S of solved problems, total # of attempts, total # of attempts on S)
● Size of the state space is O(N^2 * 2^T), which is completely manageable.

Problem M: Buildings
● Create a bipartite graph with X coordinates on the left side and Y coordinates

on the right side.
● A path of length three has to close to a cycle of length 4
● Closing all cycles of length 4 means transforming a bipartite graph to a full

bipartite graph.
● Use BFS to find all connected components of the bipartite graph
● Answer will be R1 * C1 + R2 * C2 + … where Ri, Ci are number of upper/lower

vertex of i-th component.

Problem N: Lockdown
● Given some time t, the positions of all officers can be determined.
● Thus, can do DP with the state space (time, position of Ashot).

○ There is a problem: We do not know how large time can be.
○ In fact, it can be so large that this approach does not work.

● Improved version:
○ The state of the officers’ positions repeats every 120 steps (at most), because we may have

cycles of even length only (e.g. 1 2 3 2 or 1 2 3 4 5 4 3 2) and they will repeat in LCM(2, 4, 6,
8, 12) = 120.

○ So the time dimension is not unbounded.
● Can be solved using Dijkstra or DP over the space of size 120 x R x C

